Saturday, 21 October 2023

Using Azure Health Information extraction in Azure Cognitive Services

This article presents code how to extract Health information from arbitrary text using Azure Health Information extraction in Azure Cognitive Services. This technology uses NLP - natural language processing combined with AI techniques. A Github repo exists with the code for a running .NET MAUI Blazor demo in .NET 7 here:

https://github.com/toreaurstadboss/HealthTextAnalytics

A screenshot from the demo shows how it works below. The demo uses Azure AI Healthcare information extraction to extract entities of the text, such as a person's age, gender, employment and medical history and condition such as diagnosises, procedures and so on. The returned data in the demo is shown at the bottom of the demo, the raw data shows it is in the format as a json and in a FHIR format. Since we want FHIR format, we must use the REST api to get this information. Azure AI Healthcare information also extracts relations, which is connecting the entities together for semantic analysis of the text. Also, links exist for each entity for further reading. These are external systems such as Snomed CT and Snomed codes for each entity. Let's look at the source code for the demo next. We define a named http client in the MauiProgram.cs file which starts the application. We could move the code into a middleware extension method, but the code is kept simple in the demo.

MauiProgram.cs


  var azureEndpoint = Environment.GetEnvironmentVariable("AZURE_COGNITIVE_SERVICES_LANGUAGE_SERVICE_ENDPOINT");
  var azureKey = Environment.GetEnvironmentVariable("AZURE_COGNITIVE_SERVICES_LANGUAGE_SERVICE_KEY");

  if (string.IsNullOrWhiteSpace(azureEndpoint))
  {
      throw new ArgumentNullException(nameof(azureEndpoint), "Missing system environment variable: AZURE_COGNITIVE_SERVICES_LANGUAGE_SERVICE_ENDPOINT");
  }
  if (string.IsNullOrWhiteSpace(azureKey))
  {
      throw new ArgumentNullException(nameof(azureKey), "Missing system environment variable: AZURE_COGNITIVE_SERVICES_LANGUAGE_SERVICE_KEY");
  }

  var azureEndpointHost = new Uri(azureEndpoint);

  builder.Services.AddHttpClient("Az", httpClient =>
  {
      string baseUrl = azureEndpointHost.GetLeftPart(UriPartial.Authority); //https://stackoverflow.com/a/18708268/741368
      httpClient.BaseAddress = new Uri(baseUrl);
      //httpClient..Add("Content-type", "application/json");
      //httpClient.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue("application/json"));//ACCEPT header
      httpClient.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key", azureKey);
  });



The content-type header will be specified instead inside the HttpRequestMessage shown further below and not in this named client. As we see, we must add both the endpoint base url and also the key in the Ocp-Apim-Subscription-key http header. Let's next look at how to create a POST request to the language resource endpoint that offers the health text analysis below.

HealthAnalyticsTextClientService.cs




using HealthTextAnalytics.Models;
using System.Diagnostics;
using System.Text;
using System.Text.Json.Nodes;

namespace HealthTextAnalytics.Util
{

    public class HealthAnalyticsTextClientService : IHealthAnalyticsTextClientService
    {

        private readonly IHttpClientFactory _httpClientFactory;
        private const int awaitTimeInMs = 500;
        private const int maxTimerWait = 10000;

        public HealthAnalyticsTextClientService(IHttpClientFactory httpClientFactory)
        {
            _httpClientFactory = httpClientFactory;
        }

        public async Task<HealthTextAnalyticsResponse> GetHealthTextAnalytics(string inputText)
        {
            var client = _httpClientFactory.CreateClient("Az");
            string requestBodyRaw = HealthAnalyticsTextHelper.CreateRequest(inputText);
            //https://learn.microsoft.com/en-us/azure/ai-services/language-service/text-analytics-for-health/how-to/call-api?tabs=ner
            var stopWatch = Stopwatch.StartNew();
            HttpRequestMessage request = CreateTextAnalyticsRequest(requestBodyRaw);
            var response = await client.SendAsync(request);
            var result = new HealthTextAnalyticsResponse();
            var timer = new PeriodicTimer(TimeSpan.FromMilliseconds(awaitTimeInMs));
            int timeAwaited = 0;

            while (await timer.WaitForNextTickAsync())
            {
                if (response.IsSuccessStatusCode)
                {
                    result.IsSearchPerformed = true;
                    var operationLocation = response.Headers.First(h => h.Key?.ToLower() == Constants.Constants.HttpHeaderOperationResultAvailable).Value.FirstOrDefault();

                    var resultFromHealthAnalysis = await client.GetAsync(operationLocation);
                    JsonNode resultFromService = await resultFromHealthAnalysis.GetJsonFromHttpResponse();
                    if (resultFromService.GetValue<string>("status") == "succeeded")
                    {
                        result.AnalysisResultRawJson = await resultFromHealthAnalysis.Content.ReadAsStringAsync();
                        result.ExecutionTimeInMilliseconds = stopWatch.ElapsedMilliseconds;
                        result.Entities.AddRange(HealthAnalyticsTextHelper.GetEntities(result.AnalysisResultRawJson));
                        result.CategorizedInputText = HealthAnalyticsTextHelper.GetCategorizedInputText(inputText, result.AnalysisResultRawJson);
                        break;
                    }
                }
                timeAwaited += 500;
                if (timeAwaited >= maxTimerWait)
                {
                    result.CategorizedInputText = $"ERR: Timeout. Operation to analyze input text using Azure HealthAnalytics language service timed out after waiting for {timeAwaited} ms.";
                    break;
                }
            }

            return result;
        }

        private static HttpRequestMessage CreateTextAnalyticsRequest(string requestBodyRaw)
        {
            var request = new HttpRequestMessage(HttpMethod.Post, Constants.Constants.AnalyzeTextEndpoint);
            request.Content = new StringContent(requestBodyRaw, Encoding.UTF8, "application/json");//CONTENT-TYPE header
            return request;
        }
    }

}



The code is using some helper methods to be shown next. As the code above shows, we must poll the Azure service until we get a reply from the service. We poll every 0.5 second up to a maxium of 10 seconds from the service. Typical requests takes about 3-4 seconds to process. Longer input text / 'documents' would need more processing time than 10 seconds, but for this demo, it works great.

HealthAnalyticsTextHelper.CreateRequest method


  public static string CreateRequest(string inputText)
  {
      //note - the id 1 here in the request is a 'local id' that must be unique per request. only one text is supported in the 
      //request genreated, however the service allows multiple documents and id's if necessary. in this demo, we only will send in one text at a time
      var request = new
      {
          analysisInput = new
          {
              documents = new[]
              {
                  new { text = inputText, id = "1", language = "en" }
              }
          },
          tasks = new[]
          {
              new { id = "analyze 1", kind = "Healthcare", parameters = new { fhirVersion = "4.0.1" } }
          }
      };
      return JsonSerializer.Serialize(request, new JsonSerializerOptions { WriteIndented = true });
  }



Creating the body of POST we use a template via a new anonymized object shown above which is what the REST service excepts. We could have multiple documents here, that is input texts, in this demo only one text / document is sent in. Note the use of id='1' and 'analyze 1' here. We have some helper methods in System.Text.Json here to extract the JSON data sent in the response.

JsonNodeUtil


 public static class JsonNodeUtil
 {

     public static async Task<JsonNode> GetJsonFromHttpResponse(this HttpResponseMessage response)
     {
         var resultFromService = JsonSerializer.Deserialize<JsonNode>(await response.Content.ReadAsStringAsync());
         return resultFromService;
     }

     public static T? GetValue<T>(this JsonNode jsonNode, string key)
     {
         if (jsonNode == null)
         {
             return default;
         }
         return jsonNode[key] != null ? jsonNode[key].GetValue<T>() : default;
     }

 }

 

More code exists for returning a categorized colored input text showing the entities of the input text in the helper below.

HealthAnalyticsTextHelper.cs - methods GetCategorizedInputText and GetBackgroundColor


 public static string GetCategorizedInputText(string inputText, string analysisText)
 {
     var sb = new StringBuilder(inputText);
     try
     {
         Root doc = JsonSerializer.Deserialize<Root>(analysisText);

         //try loading up the documents inside of the analysisText
         var entities = doc?.tasks?.items.FirstOrDefault()?.results?.documents?.SelectMany(d => d.entities)?.ToList();
         if (entities != null)
         {
             foreach (var row in entities.OrderByDescending(r => r.offset))
             {
                 sb.Insert(row.offset + row.length, "</b></span>");
                 sb.Insert(row.offset, $"<span style='color:{GetBackgroundColor(row)}' title='{row.category}: {row.text} Confidence: {row.confidenceScore} {row.name}'><b>");
             }
         }
     }
     catch (Exception err)
     {

         Console.WriteLine("Got an error while trying to load in analysis healthcare json: " + err.ToString());
     }
     return $"<pre style='text-wrap:wrap; max-height:500px;font-size: 10pt;font-family:Verdana, Geneva, Tahoma, sans-serif;'>{sb}</pre>";
 }

 private static string GetBackgroundColor(Entity row)
 {
     var cat = row?.category?.ToLower();
     string backgroundColor = cat switch
     {
         "age" => "purple",
         "diagnosis" => "orange",
         "gender" => "purple",
         "symptomorsign" => "purple",
         "direction" => "blue",
         "symptom" => "purple",
         "symptoms" => "purple",
         "bodystructure" => "blue",
         "body" => "purple",
         "structure" => "purple",
         "examinationname" => "green",
         "procedure" => "green",
         "treatmentname" => "green",
         "conditionqualifier" => "lightgreen",
         "time" => "lightgreen",
         "date" => "lightgreen",
         "familyrelation" => "purple",
         "employment" => "purple",
         "livingstatus" => "purple",
         "administrativeevent" => "darkgreen",
         "careenvironment" => "darkgreen",
         _ => "darkgray"
     };
     return backgroundColor;
 }




I have added the Domain classes from the service using the https://json2csharp.com/ website on the intial responses I got from the REST service using Postman. The REST Api might change in the future, that is, the JSON returned. In that case, you might want to adjust the domain classes here if the deserialization fails. It seems relatively stable though, I have tested the code for some weeks now. Finally, the categorized colored text code here had to remove newlines to get a correct indexing of the different entities found in the text. This code shows how to get rid of newlines of the inputted text.


 public static class StringExtensions
 {
     
     public static string CleanupAllWhiteSpace(this string input) => Regex.Replace(input ?? string.Empty, @"\s+", " ");
     
 }


Let's look at the UI in the Index.razor file below.

Index.razor


@page "/"
@using HealthTextAnalytics.Models;
@inject IHttpClientFactory _httpClientFactory;
@inject IHealthAnalyticsTextClientService _healthAnalyticsTextClientService;

<h3>Azure HealthCare Text Analysis - Azure Cognitive Services</h3>

<EditForm Model="@Model" OnValidSubmit="@Submit">
    <DataAnnotationsValidator />
    <ValidationSummary />

    <InputWatcher @ref="inputWatcher" FieldChanged="@FieldChanged" />

    <div class="form-group row">
        <label><strong>Text input</strong></label>
        <InputTextArea @onkeyup="@removeWhitespace" class="overflow-scroll" style="max-height:500px;max-width:900px;font-size: 10pt;font-family:Verdana, Geneva, Tahoma, sans-serif" @bind-Value="@Model.InputText" rows="5" />
    </div>

    <div class="form-group row"> 
        <div class="col">
            <br />
            <button class="btn btn-outline-primary" disabled="@isInvalid" type="submit">Run</button>
        </div>
        <div class="col">
        </div>
        <div class="col">
        </div>
    </div>

    <br />

@if (isProcessing)
{

        <div class="progress" style="max-width: 90%">
            <div class="progress-bar progress-bar-striped progress-bar-animated"
                 style="width: 100%; background-color: green">
                 Retrieving result from Azure HealthCare Text Analysis. Processing..
            </div>
        </div>
        <br />

}

    <div class="form-group row">
        <label><strong>Analysis result</strong></label>

        @if (isSearchPerformed)
    {
        <br />
        <b>Execution time took: @Model.ExecutionTime ms (milliseconds)</b><br />
        <br />

        <b>Categorized and analyzed Health Analysis of inputted text</b>
        @ms
        <br />
     
        <table class="table table-striped table-dark table-hover">
                <th>Category</th>
                <th>Text</th>
                <th>Name</th>
                <th>ConfidenceScore</th>
                <th>Offset</th>
                <th>Length</th>
                <th>Links</th>
            <tbody>
            @foreach (var entity in Model.EntititesInAnalyzedResult)
        {
            <tr>
                    <td>@entity.category</td>
                    <td>@entity.text</td>
                    <td>@entity.name</td>
                    <td>@entity.confidenceScore</td>
                    <td>@entity.offset</td>
                    <td>@entity.length</td>
                    <td>@string.Join(Environment.NewLine, (@entity.links ?? new List<Link>()).Select(l => l?.dataSource + " " + l?.id + " | "))</td>
                </tr>
            
        }
            </tbody>
            </table>

        <b>Health Analysis raw text from Azure service</b>
        <InputTextArea class="overflow-scroll" readonly="readonly" style="max-height:500px; max-width:900px;font-size: 10pt;font-family:Verdana, Geneva, Tahoma, sans-serif" @bind-Value="@Model.AnalysisResult" rows="1000" />

    }
   </div>

</EditForm>


The code-behind of Index.razor , looks like this.


using HealthTextAnalytics.Models;
using HealthTextAnalytics.Util;
using Microsoft.AspNetCore.Components;
using Microsoft.AspNetCore.Components.Web;

namespace HealthTextAnalytics.Pages
{
    public partial class Index
    {

        private IndexModel Model = new();
        MarkupString ms = new();
        private bool isProcessing = false;
        private bool isSearchPerformed = false;   

        private InputWatcher inputWatcher = new InputWatcher();
        private bool isInvalid = false;

        private void FieldChanged(string fieldName)
        {
            isInvalid = !inputWatcher.Validate();
        }
        
        protected override void OnParametersSet()
        {
            Model.InputText = SampleData.Sampledata.SamplePatientTextNote2.CleanupAllWhiteSpace();
            StateHasChanged();
        }

        private void removeWhitespace(KeyboardEventArgs eventArgs)
        {
            Model.InputText = Model.InputText.CleanupAllWhiteSpace();
            StateHasChanged();
        }

        private async Task Submit()
        {
            try
            {
                ResetFieldsForBeforeSearch();

                HealthTextAnalyticsResponse response = await _healthAnalyticsTextClientService.GetHealthTextAnalytics(Model.InputText);
                Model.EntititesInAnalyzedResult = response.Entities;
                Model.ExecutionTime = response.ExecutionTimeInMilliseconds;
                Model.AnalysisResult = response.AnalysisResultRawJson;

                ms = new MarkupString(response.CategorizedInputText);              
            }
            catch (Exception err)
            {
                Console.WriteLine(err);
            }
            finally
            {
                ResetFieldsAfterSearch();
                StateHasChanged();
            }
        }

        private void ResetFieldsForBeforeSearch()
        {
            isProcessing = true;
            isSearchPerformed = false;
            ms = new MarkupString(string.Empty);
            Model.EntititesInAnalyzedResult.Clear();
            Model.AnalysisResult = string.Empty;
        }

        private void ResetFieldsAfterSearch()
        {
            isProcessing = false;
            isSearchPerformed = true;
        }

    }
}


Saturday, 14 October 2023

Using Image Analysis in Azure AI Cognitive Services

I have added a demo .NET MAUI Blazor app that uses Image Analysis in Computer Vision in Azure Cognitive Services. Note that Image Analysis is not available in all Azure data centers. For example, Norway East does not have this feature. However, North Europe Azure data center do have the feature, the data center i Ireland. A Github repo exists for this demo here:

https://github.com/toreaurstadboss/Image.Analyze.Azure.Ai

A screen shot for this demo is shown below: Demo screenshot The demo allows you to upload a picture (supported formats are .jpeg, .jpg and .png, but Azure AI Image Analyzer supports a lot of other image formats too). The demo shows a preview of the selected image and to the right an image of bounding boxes of objects in the image. A list of tags extracted from the image are also shown. Raw data from the Azure Image Analyzer service is shown in the text box area below the pictures, with a list of tags to the right. The demo is written with .NET Maui Blazor and .NET 6. Let us look at some code for making this demo. ImageSaveService.cs


using Image.Analyze.Azure.Ai.Models;
using Microsoft.AspNetCore.Components.Forms;

namespace Ocr.Handwriting.Azure.AI.Services
{

    public class ImageSaveService : IImageSaveService
    {

        public async Task<ImageSaveModel> SaveImage(IBrowserFile browserFile)
        {
            var buffers = new byte[browserFile.Size];
            var bytes = await browserFile.OpenReadStream(maxAllowedSize: 30 * 1024 * 1024).ReadAsync(buffers);
            string imageType = browserFile.ContentType;

            var basePath = FileSystem.Current.AppDataDirectory;
            var imageSaveModel = new ImageSaveModel
            {
                SavedFilePath = Path.Combine(basePath, $"{Guid.NewGuid().ToString("N")}-{browserFile.Name}"),
                PreviewImageUrl = $"data:{imageType};base64,{Convert.ToBase64String(buffers)}",
                FilePath = browserFile.Name,
                FileSize = bytes / 1024,
            };

            await File.WriteAllBytesAsync(imageSaveModel.SavedFilePath, buffers);

            return imageSaveModel;
        }

    }
}

//Interface defined inside IImageService.cs shown below
using Image.Analyze.Azure.Ai.Models;
using Microsoft.AspNetCore.Components.Forms;

namespace Ocr.Handwriting.Azure.AI.Services
{
  
    public interface IImageSaveService
    {

        Task<ImageSaveModel> SaveImage(IBrowserFile browserFile);

    }

}


The ImageSaveService saves the uploaded image from the IBrowserFile into a base-64 string from the image bytes of the uploaded IBrowserFile via OpenReadStream of the IBrowserFile. This allows us to preview the uploaded image. The code also saves the image to the AppDataDirectory that MAUI supports - FileSystem.Current.AppDataDirectory. Let's look at how to call the analysis service itself, it is actually quite straight forward. ImageAnalyzerService.cs


using Azure;
using Azure.AI.Vision.Common;
using Azure.AI.Vision.ImageAnalysis;

namespace Image.Analyze.Azure.Ai.Lib
{

    public class ImageAnalyzerService : IImageAnalyzerService
    {

        public ImageAnalyzer CreateImageAnalyzer(string imageFile)
        {
            string key = Environment.GetEnvironmentVariable("AZURE_COGNITIVE_SERVICES_VISION_SECONDARY_KEY");
            string endpoint = Environment.GetEnvironmentVariable("AZURE_COGNITIVE_SERVICES_VISION_SECONDARY_ENDPOINT");
            var visionServiceOptions = new VisionServiceOptions(new Uri(endpoint), new AzureKeyCredential(key));

            using VisionSource visionSource = CreateVisionSource(imageFile);

            var analysisOptions = CreateImageAnalysisOptions();

            var analyzer = new ImageAnalyzer(visionServiceOptions, visionSource, analysisOptions);
            return analyzer;

        }

        private static VisionSource CreateVisionSource(string imageFile)
        {
            using var stream = File.OpenRead(imageFile);
            using var reader = new StreamReader(stream);
            byte[] imageBuffer;
            using (var streamReader = new MemoryStream())
            {
                stream.CopyTo(streamReader);
                imageBuffer = streamReader.ToArray();
            }

            using var imageSourceBuffer = new ImageSourceBuffer();
            imageSourceBuffer.GetWriter().Write(imageBuffer);
            return VisionSource.FromImageSourceBuffer(imageSourceBuffer);
        }

        private static ImageAnalysisOptions CreateImageAnalysisOptions() => new ImageAnalysisOptions
        {
            Language = "en",
            GenderNeutralCaption = false,
            Features =
              ImageAnalysisFeature.CropSuggestions
            | ImageAnalysisFeature.Caption
            | ImageAnalysisFeature.DenseCaptions
            | ImageAnalysisFeature.Objects
            | ImageAnalysisFeature.People
            | ImageAnalysisFeature.Text
            | ImageAnalysisFeature.Tags
        };

    }

}

//interface shown below 

 public interface IImageAnalyzerService
 {
     ImageAnalyzer CreateImageAnalyzer(string imageFile);
 }



We retrieve environment variables here and we create an ImageAnalyzer. We create a Vision source from the saved picture we uploaded and open a stream to it using File.OpenRead method on System.IO. Since we saved the file in the AppData folder of the .NET MAUI app, we can read this file. We set up the image analysis options and the vision service options. We then call the return the image analyzer. Let's look at the code-behind of the index.razor file that initializes the Image analyzer, and runs the Analyze method of it. Index.razor.cs
 
 
 using Azure.AI.Vision.ImageAnalysis;
using Image.Analyze.Azure.Ai.Extensions;
using Image.Analyze.Azure.Ai.Models;
using Microsoft.AspNetCore.Components.Forms;
using Microsoft.JSInterop;
using System.Text;

namespace Image.Analyze.Azure.Ai.Pages
{
    partial class Index
    {

        private IndexModel Model = new();

        //https://learn.microsoft.com/en-us/azure/ai-services/computer-vision/how-to/call-analyze-image-40?WT.mc_id=twitter&pivots=programming-language-csharp

        private string ImageInfo = string.Empty;

        private async Task Submit()
        {
            if (Model.PreviewImageUrl == null || Model.SavedFilePath == null)
            {
                await Application.Current.MainPage.DisplayAlert($"MAUI Blazor Image Analyzer App", $"You must select an image first before running Image Analysis. Supported formats are .jpeg, .jpg and .png", "Ok", "Cancel");
                return;
            }

            using var imageAnalyzer = ImageAnalyzerService.CreateImageAnalyzer(Model.SavedFilePath);

            ImageAnalysisResult analysisResult = await imageAnalyzer.AnalyzeAsync();

            if (analysisResult.Reason == ImageAnalysisResultReason.Analyzed)
            {
                Model.ImageAnalysisOutputText = analysisResult.OutputImageAnalysisResult();
                Model.Caption = $"{analysisResult.Caption.Content} Confidence: {analysisResult.Caption.Confidence.ToString("F2")}";
                Model.Tags = analysisResult.Tags.Select(t => $"{t.Name} (Confidence: {t.Confidence.ToString("F2")})").ToList();
                var jsonBboxes = analysisResult.GetBoundingBoxesJson();
                await JsRunTime.InvokeVoidAsync("LoadBoundingBoxes", jsonBboxes);
            }
            else
            {
                ImageInfo = $"The image analysis did not perform its analysis. Reason: {analysisResult.Reason}";
            }

            StateHasChanged(); //visual refresh here
        }

        private async Task CopyTextToClipboard()
        {
            await Clipboard.SetTextAsync(Model.ImageAnalysisOutputText);
            await Application.Current.MainPage.DisplayAlert($"MAUI Blazor Image Analyzer App", $"The copied text was put into the clipboard. Character length: {Model.ImageAnalysisOutputText?.Length}", "Ok", "Cancel");
        }

        private async Task OnInputFile(InputFileChangeEventArgs args)
        {
            var imageSaveModel = await ImageSaveService.SaveImage(args.File);
            Model = new IndexModel(imageSaveModel);
            await Application.Current.MainPage.DisplayAlert($"MAUI Blazor ImageAnalyzer app App", $"Wrote file to location : {Model.SavedFilePath} Size is: {Model.FileSize} kB", "Ok", "Cancel");
        }


    }
}
 
 
In the code-behind above we have a submit handler called Submit. We there analyze the image and send the result both to the UI and also to a client side Javascript method using IJSRuntime in .NET MAUI Blazor. Let's look at the two helper methods of ImageAnalysisResult next. ImageAnalysisResultExtensions.cs
 
 
 using Azure.AI.Vision.ImageAnalysis;
using System.Text;

namespace Image.Analyze.Azure.Ai.Extensions
{
    public static class ImageAnalysisResultExtensions
    {

        public static string GetBoundingBoxesJson(this ImageAnalysisResult result)
        {
            var sb = new StringBuilder();
            sb.AppendLine(@"[");

            int objectIndex = 0;
            foreach (var detectedObject in result.Objects)
            {
                sb.Append($"{{ \"Name\": \"{detectedObject.Name}\", \"Y\": {detectedObject.BoundingBox.Y}, \"X\": {detectedObject.BoundingBox.X}, \"Height\": {detectedObject.BoundingBox.Height}, \"Width\": {detectedObject.BoundingBox.Width}, \"Confidence\": \"{detectedObject.Confidence:0.0000}\" }}");
                objectIndex++;
                if (objectIndex < result.Objects?.Count)
                {
                    sb.Append($",{Environment.NewLine}");
                }
                else
                {
                    sb.Append($"{Environment.NewLine}");
                }
            }
            sb.Remove(sb.Length - 2, 1); //remove trailing comma at the end
            sb.AppendLine(@"]");
            return sb.ToString();
        }

        public static string OutputImageAnalysisResult(this ImageAnalysisResult result)
        {
            var sb = new StringBuilder();

            if (result.Reason == ImageAnalysisResultReason.Analyzed)
            {

                sb.AppendLine($" Image height = {result.ImageHeight}");
                sb.AppendLine($" Image width = {result.ImageWidth}");
                sb.AppendLine($" Model version = {result.ModelVersion}");

                if (result.Caption != null)
                {
                    sb.AppendLine(" Caption:");
                    sb.AppendLine($"   \"{result.Caption.Content}\", Confidence {result.Caption.Confidence:0.0000}");
                }

                if (result.DenseCaptions != null)
                {
                    sb.AppendLine(" Dense Captions:");
                    foreach (var caption in result.DenseCaptions)
                    {
                        sb.AppendLine($"   \"{caption.Content}\", Bounding box {caption.BoundingBox}, Confidence {caption.Confidence:0.0000}");
                    }
                }

                if (result.Objects != null)
                {
                    sb.AppendLine(" Objects:");
                    foreach (var detectedObject in result.Objects)
                    {
                        sb.AppendLine($"   \"{detectedObject.Name}\", Bounding box {detectedObject.BoundingBox}, Confidence {detectedObject.Confidence:0.0000}");
                    }
                }

                if (result.Tags != null)
                {
                    sb.AppendLine($" Tags:");
                    foreach (var tag in result.Tags)
                    {
                        sb.AppendLine($"   \"{tag.Name}\", Confidence {tag.Confidence:0.0000}");
                    }
                }

                if (result.People != null)
                {
                    sb.AppendLine($" People:");
                    foreach (var person in result.People)
                    {
                        sb.AppendLine($"   Bounding box {person.BoundingBox}, Confidence {person.Confidence:0.0000}");
                    }
                }

                if (result.CropSuggestions != null)
                {
                    sb.AppendLine($" Crop Suggestions:");
                    foreach (var cropSuggestion in result.CropSuggestions)
                    {
                        sb.AppendLine($"   Aspect ratio {cropSuggestion.AspectRatio}: "
                            + $"Crop suggestion {cropSuggestion.BoundingBox}");
                    };
                }

                if (result.Text != null)
                {
                    sb.AppendLine($" Text:");
                    foreach (var line in result.Text.Lines)
                    {
                        string pointsToString = "{" + string.Join(',', line.BoundingPolygon.Select(pointsToString => pointsToString.ToString())) + "}";
                        sb.AppendLine($"   Line: '{line.Content}', Bounding polygon {pointsToString}");

                        foreach (var word in line.Words)
                        {
                            pointsToString = "{" + string.Join(',', word.BoundingPolygon.Select(pointsToString => pointsToString.ToString())) + "}";
                            sb.AppendLine($"     Word: '{word.Content}', Bounding polygon {pointsToString}, Confidence {word.Confidence:0.0000}");
                        }
                    }
                }

                var resultDetails = ImageAnalysisResultDetails.FromResult(result);
                sb.AppendLine($" Result details:");
                sb.AppendLine($"   Image ID = {resultDetails.ImageId}");
                sb.AppendLine($"   Result ID = {resultDetails.ResultId}");
                sb.AppendLine($"   Connection URL = {resultDetails.ConnectionUrl}");
                sb.AppendLine($"   JSON result = {resultDetails.JsonResult}");
            }
            else
            {
                var errorDetails = ImageAnalysisErrorDetails.FromResult(result);
                sb.AppendLine(" Analysis failed.");
                sb.AppendLine($"   Error reason : {errorDetails.Reason}");
                sb.AppendLine($"   Error code : {errorDetails.ErrorCode}");
                sb.AppendLine($"   Error message: {errorDetails.Message}");
            }

            return sb.ToString();
        }

    }
}


  
 
Finally, let's look at the client side Javascript function that we call and send the bounding boxes json to draw the boxes. We will use Canvas in HTML 5 to show the picture and the bounding boxes of objects found in the image. index.html
 
 
 	<script type="text/javascript">

		var colorPalette = ["red", "yellow", "blue", "green", "fuchsia", "moccasin", "purple", "magenta", "aliceblue", "lightyellow", "lightgreen"];

		function rescaleCanvas() {
			var img = document.getElementById('PreviewImage');
			var canvas = document.getElementById('PreviewImageBbox');
			canvas.width = img.width;
			canvas.height = img.height;
		}

		function getColor() {
			var colorIndex = parseInt(Math.random() * 10);
			var color = colorPalette[colorIndex];
			return color;
		}

		function LoadBoundingBoxes(objectDescriptions) {
			if (objectDescriptions == null || objectDescriptions == false) {
				alert('did not find any objects in image. returning from calling load bounding boxes : ' + objectDescriptions);
				return;
			}

			var objectDesc = JSON.parse(objectDescriptions);
			//alert('calling load bounding boxes, starting analysis on clientside js : ' + objectDescriptions);

			rescaleCanvas();
			var canvas = document.getElementById('PreviewImageBbox');
			var img = document.getElementById('PreviewImage');

			var ctx = canvas.getContext('2d');
			ctx.drawImage(img, img.width, img.height);

			ctx.font = "10px Verdana";

			for (var i = 0; i < objectDesc.length; i++) {
				ctx.beginPath();
				ctx.strokeStyle = "black";
				ctx.lineWidth = 1;
				ctx.fillText(objectDesc[i].Name, objectDesc[i].X + objectDesc[i].Width / 2, objectDesc[i].Y + objectDesc[i].Height / 2);
				ctx.fillText("Confidence: " + objectDesc[i].Confidence, objectDesc[i].X + objectDesc[i].Width / 2, 10 + objectDesc[i].Y + objectDesc[i].Height / 2);
			}

			for (var i = 0; i < objectDesc.length; i++) {
				ctx.fillStyle = getColor();
				ctx.globalAlpha = 0.2;
				ctx.fillRect(objectDesc[i].X, objectDesc[i].Y, objectDesc[i].Width, objectDesc[i].Height);
				ctx.lineWidth = 3;
				ctx.strokeStyle = "blue";
				ctx.rect(objectDesc[i].X, objectDesc[i].Y, objectDesc[i].Width, objectDesc[i].Height);
				ctx.fillStyle = "black";
				ctx.fillText("Color: " + getColor(), objectDesc[i].X + objectDesc[i].Width / 2, 20 + objectDesc[i].Y + objectDesc[i].Height / 2);

				ctx.stroke();
			}

			ctx.drawImage(img, 0, 0);


			console.log('got these object descriptions:');
			console.log(objectDescriptions);

		}
	</script>

 
  
The index.html file in wwwroot is the place we usually put extra css and js for MAUI Blazor apps and Blazor apps. I have chosen to put the script directly into the index.html file and not in a .js file, but that is an option to be chosen to tidy up a bit more. So there you have it, we can relatively easily find objects in images using Azure analyze image service in Azure Cognitive Services. We can get tags and captions of the image. In the demo the caption is shown above the picture loaded. Azure Computer vision service is really good since it has got a massive training set and can recognize a lot of different objects for different usages. As you see in the source code, I have the key and endpoint inside environment variables that the code expects exists. Never expose keys and endpoints in your source code.

Friday, 22 September 2023

Using Azure Computer Vision to perform Optical Character Recognition (OCR)

This article shows how you can use Azure Computer vision in Azure Cognitive Services to perform Optical Character Recognition (OCR). The Computer vision feature is available by adding a Computer Vision resource in Azure Portal. I have made a .NET MAUI Blazor app and the Github Repo for it is available here : https://github.com/toreaurstadboss/Ocr.Handwriting.Azure.AI.Models
Let us first look at the .csproj of the Lib project in this repo.


<Project Sdk="Microsoft.NET.Sdk.Razor">

  <PropertyGroup>
    <TargetFramework>net6.0</TargetFramework>
    <Nullable>enable</Nullable>
    <ImplicitUsings>enable</ImplicitUsings>
  </PropertyGroup>
  <ItemGroup>
    <SupportedPlatform Include="browser" />
  </ItemGroup>

	<ItemGroup>
		<PackageReference Include="Microsoft.Azure.CognitiveServices.Vision.ComputerVision" Version="7.0.1" />
		<PackageReference Include="Microsoft.AspNetCore.Components.Web" Version="6.0.19" />
	</ItemGroup>

</Project>


The following class generates ComputerVision clients that can be used to extract different information from streams and files containing video and images. We are going to focus on images and extracting text via OCR. Azure Computer Vision can also extract handwritten text in addition to regular text written by typewriters or text inside images and similar. Azure Computer Vision also can detect shapes in images and classify objects. This demo only focuses on text extraction form images. ComputerVisionClientFactory


using Microsoft.Azure.CognitiveServices.Vision.ComputerVision;

namespace Ocr.Handwriting.Azure.AI.Lib
{

    public interface IComputerVisionClientFactory
    {
        ComputerVisionClient CreateClient();
    }

    /// <summary>
    /// Client factory for Azure Cognitive Services - Computer vision.
    /// </summary>
    public class ComputerVisionClientFactory : IComputerVisionClientFactory
    {
        // Add your Computer Vision key and endpoint
        static string? _key = Environment.GetEnvironmentVariable("AZURE_COGNITIVE_SERVICES_VISION_KEY");
        static string? _endpoint = Environment.GetEnvironmentVariable("AZURE_COGNITIVE_SERVICES_VISION_ENDPOINT");

        public ComputerVisionClientFactory() : this(_key, _endpoint)
        {
        }

        public ComputerVisionClientFactory(string? key, string? endpoint)
        {
            _key = key;
            _endpoint = endpoint;
        }

        public ComputerVisionClient CreateClient()
        {
            if (_key == null)
            {
                throw new ArgumentNullException(_key, "The AZURE_COGNITIVE_SERVICES_VISION_KEY is not set. Set a system-level environment variable or provide this value by calling the overloaded constructor of this class.");
            }
            if (_endpoint == null)
            {
                throw new ArgumentNullException(_key, "The AZURE_COGNITIVE_SERVICES_VISION_ENDPOINT is not set. Set a system-level environment variable or provide this value by calling the overloaded constructor of this class.");
            }

            var client = Authenticate(_key!, _endpoint!);
            return client;
        }

        public static ComputerVisionClient Authenticate(string key, string endpoint) =>
            new ComputerVisionClient(new ApiKeyServiceClientCredentials(key))
            {
                Endpoint = endpoint
            };

    }
}



The setup of the endpoint and key of the Computer Vision resource is done via system-level envrionment variables. Next up, let's look at retrieving OCR text from images. Here we use ComputerVisionClient. We open up a stream of a file, an image, using File.OpenReadAsync and then the method ReadInStreamAsync of Computer vision client. The image we will load up in the app is selected by the user and the image is previewed and saved using MAUI Storage lib (inside the Appdata folder). OcrImageService.cs


using Microsoft.Azure.CognitiveServices.Vision.ComputerVision;
using Microsoft.Azure.CognitiveServices.Vision.ComputerVision.Models;
using Microsoft.Extensions.Logging;
using System.Diagnostics;
using ReadResult = Microsoft.Azure.CognitiveServices.Vision.ComputerVision.Models.ReadResult;

namespace Ocr.Handwriting.Azure.AI.Lib
{

    public interface IOcrImageService
    {
        Task<IList<ReadResult?>?> GetReadResults(string imageFilePath);
        Task<string> GetReadResultsText(string imageFilePath);
    }

    public class OcrImageService : IOcrImageService
    {
        private readonly IComputerVisionClientFactory _computerVisionClientFactory;
        private readonly ILogger<OcrImageService> _logger;

        public OcrImageService(IComputerVisionClientFactory computerVisionClientFactory, ILogger<OcrImageService> logger)
        {
            _computerVisionClientFactory = computerVisionClientFactory;
            _logger = logger;
        }

        private ComputerVisionClient CreateClient() => _computerVisionClientFactory.CreateClient();

        public async Task<string> GetReadResultsText(string imageFilePath)
        {
            var readResults = await GetReadResults(imageFilePath);
            var ocrText = ExtractText(readResults?.FirstOrDefault());
            return ocrText;
        }

        public async Task<IList<ReadResult?>?> GetReadResults(string imageFilePath)
        {
            if (string.IsNullOrWhiteSpace(imageFilePath))
            {
                return null;
            }

            try
            {
                var client = CreateClient();

                //Retrieve OCR results 

                using (FileStream stream = File.OpenRead(imageFilePath))
                {
                    var textHeaders = await client.ReadInStreamAsync(stream);
                    string operationLocation = textHeaders.OperationLocation;
                    string operationId = operationLocation[^36..]; //hat operator of C# 8.0 : this slices out the last 36 chars, which contains the guid chars which are 32 hexadecimals chars + four hyphens

                    ReadOperationResult results;

                    do
                    {
                        results = await client.GetReadResultAsync(Guid.Parse(operationId));
                        _logger.LogInformation($"Retrieving OCR results for operationId {operationId} for image {imageFilePath}");
                    }
                    while (results.Status == OperationStatusCodes.Running || results.Status == OperationStatusCodes.NotStarted);

                    IList<ReadResult?> result = results.AnalyzeResult.ReadResults;
                    return result;

                }
            }
            catch (Exception ex)
            {
                Console.WriteLine(ex.Message);
                return null;
            }
        }

        private static string ExtractText(ReadResult? readResult) => string.Join(Environment.NewLine, readResult?.Lines?.Select(l => l.Text) ?? new List<string>());

    }

}
                                           

Let's look at the MAUI Blazor project in the app. The MauiProgram.cs looks like this. MauiProgram.cs


using Ocr.Handwriting.Azure.AI.Data;
using Ocr.Handwriting.Azure.AI.Lib;
using Ocr.Handwriting.Azure.AI.Services;
using TextCopy;

namespace Ocr.Handwriting.Azure.AI;

public static class MauiProgram
{
    public static MauiApp CreateMauiApp()
    {
        var builder = MauiApp.CreateBuilder();
        builder
            .UseMauiApp<App>()
            .ConfigureFonts(fonts =>
            {
                fonts.AddFont("OpenSans-Regular.ttf", "OpenSansRegular");
            });

        builder.Services.AddMauiBlazorWebView();
#if DEBUG
        builder.Services.AddBlazorWebViewDeveloperTools();
        builder.Services.AddLogging();
#endif

        builder.Services.AddSingleton<WeatherForecastService>();
        builder.Services.AddScoped<IComputerVisionClientFactory, ComputerVisionClientFactory>();
        builder.Services.AddScoped<IOcrImageService, OcrImageService>();
        builder.Services.AddScoped<IImageSaveService, ImageSaveService>();

        builder.Services.InjectClipboard();

        return builder.Build();
    }
}



We also need some code to preview and save the image an end user chooses. The IImageService looks like this. ImageSaveService


using Microsoft.AspNetCore.Components.Forms;
using Ocr.Handwriting.Azure.AI.Models;

namespace Ocr.Handwriting.Azure.AI.Services
{

    public class ImageSaveService : IImageSaveService
    {

        public async Task<ImageSaveModel> SaveImage(IBrowserFile browserFile)
        {
            var buffers = new byte[browserFile.Size];
            var bytes = await browserFile.OpenReadStream(maxAllowedSize: 30 * 1024 * 1024).ReadAsync(buffers);
            string imageType = browserFile.ContentType;

            var basePath = FileSystem.Current.AppDataDirectory;
            var imageSaveModel = new ImageSaveModel
            {
                SavedFilePath = Path.Combine(basePath, $"{Guid.NewGuid().ToString("N")}-{browserFile.Name}"),
                PreviewImageUrl = $"data:{imageType};base64,{Convert.ToBase64String(buffers)}",
                FilePath = browserFile.Name,
                FileSize = bytes / 1024,
            };

            await File.WriteAllBytesAsync(imageSaveModel.SavedFilePath, buffers);

            return imageSaveModel;
        }

    }
}


Note the use of maxAllowedSize of IBrowserfile.OpenReadStream method, this is a good practice since IBrowserFile only supports 512 kB per default. I set it in the app to 30 MB to support some high res images too. We preview the image as base-64 here and we also save the image also. Note the use of FileSystem.Current.AppDataDirectory as base path here. Here we use nuget package Microsoft.Maui.Storage. These are the packages that is used for the MAUI Blazor project of the app. Ocr.Handwriting.Azure.AI.csproj



    <ItemGroup>
      <PackageReference Include="Microsoft.Azure.CognitiveServices.Vision.ComputerVision" Version="7.0.1" />
      <PackageReference Include="TextCopy" Version="6.2.1" />
    </ItemGroup>


The GUI looks like this : Index.razor


@page "/"
@using Ocr.Handwriting.Azure.AI.Models;
@using Microsoft.Azure.CognitiveServices.Vision.ComputerVision;
@using Microsoft.Azure.CognitiveServices.Vision.ComputerVision.Models;
@using Ocr.Handwriting.Azure.AI.Lib;
@using Ocr.Handwriting.Azure.AI.Services;
@using TextCopy;

@inject IImageSaveService ImageSaveService
@inject IOcrImageService OcrImageService 
@inject IClipboard Clipboard

<h1>Azure AI OCR Text recognition</h1>


<EditForm Model="Model" OnValidSubmit="@Submit" style="background-color:aliceblue">
    <DataAnnotationsValidator />
    <label><b>Select a picture to run OCR</b></label><br />
    <InputFile OnChange="@OnInputFile" accept=".jpeg,.jpg,.png" />
    <br />
    <code class="alert-secondary">Supported file formats: .jpeg, .jpg and .png</code>
    <br />
    @if (Model.PreviewImageUrl != null) { 
        <label class="alert-info">Preview of the selected image</label>
        <div style="overflow:auto;max-height:300px;max-width:500px">
            <img class="flagIcon" src="@Model.PreviewImageUrl" /><br />
        </div>

        <code class="alert-light">File Size (kB): @Model.FileSize</code>
        <br />
        <code class="alert-light">File saved location: @Model.SavedFilePath</code>
        <br />

        <label class="alert-info">Click the button below to start running OCR using Azure AI</label><br />
        <br />
        <button type="submit">Submit</button> <button style="margin-left:200px" type="button" class="btn-outline-info" @onclick="@CopyTextToClipboard">Copy to clipboard</button>
        <br />
        <br />
        <InputTextArea style="width:1000px;height:300px" readonly="readonly" placeholder="Detected text in the image uploaded" @bind-Value="Model!.OcrOutputText" rows="5"></InputTextArea>
    }
</EditForm>


@code {

    private IndexModel Model = new();

    private async Task OnInputFile(InputFileChangeEventArgs args)
    {       
        var imageSaveModel = await ImageSaveService.SaveImage(args.File);
        Model = new IndexModel(imageSaveModel);
        await Application.Current.MainPage.DisplayAlert($"MAUI Blazor OCR App", $"Wrote file to location : {Model.SavedFilePath} Size is: {Model.FileSize} kB", "Ok", "Cancel");
    }

    public async Task CopyTextToClipboard()
    {
        await Clipboard.SetTextAsync(Model.OcrOutputText);
        await Application.Current.MainPage.DisplayAlert($"MAUI Blazor OCR App", $"The copied text was put into the clipboard. Character length: {Model.OcrOutputText?.Length}", "Ok", "Cancel");

    }

    private async Task Submit()
    {
        if (Model.PreviewImageUrl == null || Model.SavedFilePath == null)
        {
            await Application.Current.MainPage.DisplayAlert($"MAUI Blazor OCR App", $"You must select an image first before running OCR. Supported formats are .jpeg, .jpg and .png", "Ok", "Cancel");
            return;
        }
        Model.OcrOutputText = await OcrImageService.GetReadResultsText(Model.SavedFilePath);
        StateHasChanged(); //visual refresh here
    }

}


The UI works like this. The user selects an image. As we can see by the 'accept' html attribute, the .jpeg, .jpg and .png extensions are allowed in the file input dialog. When the user selects an image, the image is saved and previewed in the UI. By hitting the Submit button, the OCR service in Azure is contacted and text is retrieved and displayed in the text area below, if any text is present in the image. A button allows copying the text into the clipboard. Here are some screenshots of the app.