Showing posts with label dotnet 8. Show all posts
Showing posts with label dotnet 8. Show all posts

Monday, 31 March 2025

Generating Dall-e-3 images using Microsoft Semantic Kernel

In this demo, Dall-e-3 images are generated from a console app using Microsoft Semantic Kernel. The semantic kernel is a library that offers different plugins for different AI services. It is supported for multiple languages, these are C#, Java and Python. Its goal is to ease the use of consuming AI services and building a shared infrastructure for these services and offer a way to conceptualize and abstract the consumption of these services. It can also be seen as a middleware for the services and offering a framework where consuming AI services becomes a more standardized process. A Github repo has been created with the code for this demo here:

Github repo for this demo
Dall-e-3 image generator with semantic kernel

The demo contains two steps, first building the semantic kernel itself and then the image generation. First off, the .csproj file has package references to the latest as of March 2025 nuget package of Microsoft Semantic Kernel.
DalleImageGeneratorWithSemanticKernel.csproj


<Project Sdk="Microsoft.NET.Sdk"> 

  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>net8.0</TargetFramework>
    <ImplicitUsings>enable</ImplicitUsings>
    <Nullable>enable</Nullable>
    <NoWarn>$(NoWarn);CS8618,IDE0009,CA1051,CA1050,CA1707,CA1054,CA2007,VSTHRD111,CS1591,RCS1110,RCS1243,CA5394,SKEXP0001,SKEXP0010,SKEXP0020,SKEXP0040,SKEXP0050,SKEXP0060,SKEXP0070,SKEXP0101,SKEXP0110</NoWarn>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="Microsoft.SemanticKernel" Version="1.44.0" />
    <PackageReference Include="Microsoft.Extensions.Configuration.Json" Version="8.0.1" />
  </ItemGroup>

</Project>


Note that multiple warnings are marked as no warning as semantic kernel is open for change in the future and thus flags multiple different warnings. The image generation demo is set up like this in the class ImageGeneration. Note how the Kernel object is built up here. It got a builder that offers many methods to add AI services. In this case we add an ITextToImageService. The modelName used here is "dall-e-3".
ImageGeneration.cs


using DalleImageGeneratorWithSemanticKernel;
using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.Connectors.OpenAI;
using Microsoft.SemanticKernel.TextToImage;
using OpenAI.Images;
using System;
using System.Diagnostics;

namespace UseSemanticKernelFromNET;

public class ImageGeneration
{
    public async Task GenerateBasicImage(string modelName)
    {
        Kernel kernel = Kernel
            .CreateBuilder()
            .AddOpenAITextToImage(modelId:modelName, apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY")!).Build();

        ITextToImageService imageService = kernel.GetRequiredService<ITextToImageService>();

        Console.WriteLine("##### SEMANTIC KERNEL - IMAGE GENERATOR DALL-E-3 CONSOLE APP #####\n\n");


        string prompt =
           """
            In the humorous image, Vice President JD Vance and his wife are seen stepping out of their plane onto the icy runway of
            Thule Air Base. Just as they set foot on the frozen ground, a bunch of playful polar bears greet them enthusiastically, much like 
            overzealous fans welcoming celebrities. The surprised expressions on their faces are priceless as the couple finds 
            themselves being "chased" by these bundles of fur and excitement. JD Vance, with a mix of amusement and alarm, has one 
            shoe comically left behind in the snow, while his wife, holding onto her hat against the chilly wind, can't suppress a laugh.
            The scene is completed with members of the Air Base
            staff in the background, chuckling and capturing the moment on their phones, adding to the light-heartedness of the unexpected encounter.  
            The plane should carry the AirForce One Colors and read "United States of America". 
         """;

        Console.WriteLine($"\n ### STORY FOR THE IMAGE TO GENERATE WITH DALL-E-3 ### \n{prompt}\n\n");

        Console.WriteLine("\n\nStarting generation of dall-e-3 image...");

        var cts = new CancellationTokenSource();
        var cancellationToken = cts.Token;

        var rotationTask = Task.Run(() => ConsoleUtil.RotateDash(cancellationToken), cts.Token);

        var image = await imageService.GetOpenAIImageContentAsync(prompt,
            kernel: kernel,
            size: (1024, 1024), //for Dall-e-2 images, use: 256x256, 512x512, or 1024x1024. For dalle-3 images, use: 1024x1024, 1792x1024, 1024x1792. 
            style: "vivid",
            quality: "hd", //high
            responseFormat: "b64_json", // bytes
            cancellationToken: cancellationToken);       
        
        cts.Cancel(); //cancel to stop animating the waiting indicator

        var imageTmpFilePng = Path.ChangeExtension(Path.GetTempFileName(), "png");
        image?.FirstOrDefault()?.WriteToFile(imageTmpFilePng);

        Console.WriteLine($"Wrote image to location: {imageTmpFilePng}");

        Process.Start(new ProcessStartInfo
        {
            FileName = "explorer.exe",
            Arguments = imageTmpFilePng,
            UseShellExecute = true
        });

    }

}


A helper extension method has been added for the Open AI Dall-e-3 image creation. Please note that one should stick to not too many extension methods of semantic kernel itself as this defeats the purpose of a standardized way of using the semantic kernel. But in this case, it is just a helper method to customize the generation of particularly dall-e-3 (and dall-e-2) images from Open AI using the Semantic kernel. The code is shown below
TextToImageServiceExtensions.cs


using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.Connectors.OpenAI;
using Microsoft.SemanticKernel.Services;
using Microsoft.SemanticKernel.TextToImage;

namespace UseSemanticKernelFromNET;

public static class TextToImageServiceExtensions
{


    /// <summary>
    /// Generates OpenAI image content asynchronously based on the provided text input and settings.
    /// </summary>
    /// <param name="imageService">The image service used to generate the image content.</param>
    /// <param name="input">The text input used to generate the image.</param>
    /// <param name="kernel">An optional kernel instance for additional processing.</param>
    /// <param name="size">
    /// The desired size of the generated image. For DALL-E 2 images, use: 256x256, 512x512, or 1024x1024. 
    /// For DALL-E 3 images, use: 1024x1024, 1792x1024, or 1024x1792.
    /// </param>
    /// <param name="style">The style of the image. Must be "vivid" or "natural".</param>
    /// <param name="quality">The quality of the image. Must be "standard", "hd", or "high".</param>
    /// <param name="responseFormat">
    /// The format of the response. Must be one of the following: "url", "uri", "b64_json", or "bytes".
    /// </param>
    /// <param name="cancellationToken">A token to monitor for cancellation requests.</param>
    /// <returns>
    /// A task that represents the asynchronous operation. The task result contains a read-only list of 
    /// <see cref="ImageContent"/> objects representing the generated images.
    /// </returns>
    public static Task<IReadOnlyList<ImageContent>> GetOpenAIImageContentAsync(this ITextToImageService imageService,
        TextContent input,
        Kernel? kernel = null,
        (int width, int height) size = default((int, int)), // for Dall-e-2 images, use: 256x256, 512x512, or 1024x1024. For dalle-3 images, use: 1024x1024, 1792x1024, 1024x1792. 
        string style = "vivid",
        string quality = "hd",
        string responseFormat = "b64_json",        
        CancellationToken cancellationToken = default)
    {
        
        string? currentModelId = imageService.GetModelId();

        if (currentModelId != "dall-e-3" && currentModelId != "dall-e-2")
        {
            throw new NotSupportedException("This method is only supported for the DALL-E 2 and DALL-E 3 models.");
        }

        if (size.width == 0 || size.height == 0)
        {
            size = (1024, 1024); //defaulting here to (1024, 1024).
        }

        if (currentModelId == "dall-e-2"){
            var supportedSizes = new[]{
                (256, 256),
                (512, 512),
                (1024, 1024)
            };
            if (!supportedSizes.Contains(size))
            {
                throw new ArgumentException("For DALL-E 2, the size must be one of: 256x256, 512x512, or 1024x1024.");
            }
        }
        else if (currentModelId == "dall-e-3")
        {
            var supportedSizes = new[]{
                (1024, 1024),
                (1792, 1024),
                (1024, 1792)
            };
            if (!supportedSizes.Contains(size))
            {
                throw new ArgumentException("For DALL-E 3, the size must be one of: 256x256, 512x512, or 1024x1024.");
            }
        }

        return imageService.GetImageContentsAsync(
            input,
            new OpenAITextToImageExecutionSettings
                {
                    Size = size,
                    Style = style, //must be "vivid" or "natural"
                    Quality = quality, //must be "standard" or "hd" or "high"
                    ResponseFormat = responseFormat // url or uri or b64_json or bytes
                },
            kernel,
            cancellationToken);

    }
}


Screenshot of this demo, console app running:
The console app will generate the dall-e-3 image using OpenAI service for this and save the image as a PNG image and save it into file saved into a temporary location and then open this image using Windows default image viewer application. Example image generated :

Sunday, 16 February 2025

Outputting tags/objects using Azure AI

This article presents a way to output tags for an image and output it to the console. Azure AI is used, more specifically the ImageAnalysisClient. The article shows how you can define a way to consume the data for an IAsyncEnumerable, so you can use await foreach to consume the data. I would recommend this approach for many services in Azure Ai (and similar) where there is no support out of the box for async enumerable and hide away the deails in a helper extension method as shown in this article.



  public static async void ExtractImageTags()
  {
      string visionApiKey = Environment.GetEnvironmentVariable("VISION_KEY")!;
      string visionApiEndpoint = Environment.GetEnvironmentVariable("VISION_ENDPOINT")!;

      var credentials = new AzureKeyCredential(visionApiKey);
      var serviceUri = new Uri(visionApiEndpoint);

      var imageAnalysisClient = new ImageAnalysisClient(serviceUri, credentials);
      await foreach (var tag in imageAnalysisClient.ExtractImageTagsAsync("Images/Store.png"))
      {
          Console.WriteLine(tag);
      }           
  }
  

The code creates an ImageAnalysisClient, defined in the Azure.AI.Vision.ImageAnalysis Nuget package. I got two environment variables here to store the key and endpoint. Note that not all Azure Ai features are available in all regions. If you just want to test out some Azure Ai features, you can first off just test it out at US East region, as that region will have most likely all features you want to test, then you can just a more local region if you are planning to do more workloads using Azure Ai.

Then we use an await foreach pattern here to extract the image tags asynchronously. This is a custom extension method I created so I can output the tags asynchronously using await foreach and also specify a wait time between each new tag being outputted, defaulting to 200 milliseconds here.

The extension method looks like this:


using Azure.AI.Vision.ImageAnalysis;

namespace UseAzureAIServicesFromNET.Vision;

public static class ImageAnalysisClientExtensions
{

    /// <summary>
    /// Extracts the tags for image at specified path, if existing.
    /// The results are returned as async enumerable of strings. 
    /// </summary>
    /// <param name="client"></param>
    /// <param name="imagePath"></param>
    /// <param name="waitTimeInMsBetweenOutputTags">Default wait time in ms between output. Defaults to 200 ms.</param>
    /// <returns></returns>
    public static async IAsyncEnumerable<string?> ExtractImageTagsAsync(this ImageAnalysisClient client, 
    	string imagePath, int waitTimeInMsBetweenOutputTags = 200)
    {
        if (!File.Exists(imagePath))
        {
            yield return default(string); //just return null if a file is not found at provided path
        }
        using FileStream imageStream = new FileStream(imagePath, FileMode.Open);
        var analysisResult = 
        	await client.AnalyzeAsync(BinaryData.FromStream(imageStream), VisualFeatures.Tags | VisualFeatures.Caption);
        yield return $"Description: {analysisResult.Value.Caption.Text}";
        foreach (var tag in analysisResult.Value.Tags.Values)
        {
            yield return $"Tag: {tag.Name}, Confidence: {tag.Confidence:F2}";        
            await Task.Delay(waitTimeInMsBetweenOutputTags);
        }
    }

}


The console output of the tags looks like this:

In addition to tags, we can also output objects in the image in a very similar extension method:


/// <summary>
/// Extracts the objects for image at specified path, if existing.
/// The results are returned as async enumerable of strings. 
/// </summary>
/// <param name="client"></param>
/// <param name="imagePath"></param>
/// <param name="waitTimeInMsBetweenOutputTags">Default wait time in ms between output. Defaults to 200 ms.</param>
/// <returns></returns>
public static async IAsyncEnumerable<string?> ExtractImageObjectsAsync(this ImageAnalysisClient client,
string imagePath, int waitTimeInMsBetweenOutputTags = 200)
{
    if (!File.Exists(imagePath))
    {
        yield return default(string); //just return null if a file is not found at provided path
    }
    using FileStream imageStream = new FileStream(imagePath, FileMode.Open);
    var analysisResult =
    	await client.AnalyzeAsync(BinaryData.FromStream(imageStream), VisualFeatures.Objects | VisualFeatures.Caption);
    yield return $"Description: {analysisResult.Value.Caption.Text}";
    foreach (var objectInImage in analysisResult.Value.Objects.Values)
    {
            yield return $"""
Object tag: {objectInImage.Tags.FirstOrDefault()?.Name} Confidence: {objectInImage.Tags.FirstOrDefault()?.Confidence}, 
Position (bbox): {objectInImage.BoundingBox}
""";
        await Task.Delay(waitTimeInMsBetweenOutputTags);
    }
}           
             

The code is nearly identical, we set the VisualFeatures of the image to extract and we read out the objects (not the tags). The console output of the objects looks like this: